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We provide additional results on both constrained (i.e., MultiPIE [3] and CAS-PEAL-R1 [1]) and unconstrained (i.e.,

CelebA-HQ [9, 11] and LFW [6, 8]) datasets (Section 1). We demonstrate the effectiveness of the proposed SuperFront

GAN (SF-GAN) when deployed in realistic settings. From there, we then show its robustness across different views

and illumination (Section 2) in a controlled environment (i.e., MultiPIE). Moreover, we gain insight by comparing the

qualitative results of SF-GAN and its variants in Section 3. Finally, we describe the network architectures used in the

experimental section (Section 4).

1 ADDITIONAL RESULTS

1.1 Constrained faces

Detailed results for MultiPIE [3] are now assessed. Table 1 compares face recognition performance with existing

state-of-the-art on setting 1 of Multi-PIE across different poses.

To verify the improved results of SF-GAN across multiple yaws and pitches, we also compare with CAS-PEAL-R1

with its large pose variations. Synthesis results of the state-of-the-art methods are shown in Fig. 2. We show that our

method generates the most realistic faces (i.e., finer details in appearances and texture), while preserving identity.

We further show the synthesized high-resolution (HR) frontal results of both SI and MI SF-GAN with poses of 15◦,

30◦, 45◦, 60◦. Notice, photo-realistic faces are synthesized from one-to-many LR inputs of arbitrary views. The results for

MI SF-GAN were from two low-resolution (LR) inputs: the one used for the SI, and the other the inverted counterpart

(i.e., ±15◦, ±30◦, ±45◦, ±60◦). Note that all synthesized results of SI SF-GAN are consistent with the ground-truth (GT)

faces, showing clear superiority across the different pose and lighting variations. Moreover, MI SF-GAN further improves

the image quality of the synthesized images, while preserving the identity even better than SI SF-GAN.
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Table 1. Multi-PIE Setting 1. Rank-1 (%) for views (α ).

α ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦ Avg

TP-GAN [7]
LR 41.07 55.42 62.85 73.03 75.93 76.67 72.12
SR 52.68 65.98 71.47 77.93 82.53 85.61 79.39

CR-GAN [13]
LR 38.94 48.32 54.82 60.25 62.35 67.25 61.17
SR 49.97 57.18 65.42 69.25 72.72 72.65 70.01

M2FPA [10]
LR 46.72 61.03 72.85 82.93 88.01 90.10 83.47
SR 56.11 76.46 84.90 89.55 94.09 97.25 91.45

single-image (SI) SF-GAN LR 54.10 76.31 89.79 94.24 96.54 98.51 94.77
multi-image (MI) SF-GAN LR 72.19 85.95 93.63 96.17 98.80 99.62 97.06
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Fig. 1. SI and MI SF-GAN synthesis results. SI SSF-GAN recovers better frontal faces than existing methods for different
yaws. However, MI SF-GAN further improves the image quality and identity preserving ability.

1.2 Unconstrained faces

We evaluate the frontalization performance of SF-GAN with additional unconstrained datasets. Fig. 3 shows the qualitative

results of SF-GAN on the uncontrolled dataset LFW [5] and CelebA-HQ [9]. The result shows that our SF-GAN can

properly preserve details, as well as the subject identity of input face.

2 VARIOUS POSE AND ILLUMINATION

To validate the high-level of photo-realism of the images synthesized from arbitrary view and illumination, we show

more synthesized frontal results across different poses and illuminations in Fig. 4. Additionally, we vary the illumination

from bright-to-dark. Note that all synthesized results of SF-GAN remain consistent with the true faces. This shows the

superiority of the proposed across large variations in pose and lighting.

3 QUALITATIVE RESULTS FOR ABLATION STUDY

We gain insights by comparing the quality of outputs of SF-GAN and its variants (Fig. 5). To highlight the importance

of SR side-view, we first compare SF-GAN with and without the SR module. Specifically, we conduct two experiments:

(1) remove the SR module (i.e., baseline_1); (2) keep the same structure as SF-GAN except without supervision for

SR side-view (i.e., baseline_2). Then, we further show the effectiveness of our three-level loss by removing one of the

three losses: pixel- (i.e., L1), patch- (i.e., LSSIM ), or global- (i.e., LID , LAdv ). We observe that SF-GAN can synthesize

frontal face of higher quality (e.g., finer details and more accurate structures) than all variants. The variants of baseline_1
2
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Fig. 2. Qualitative results. Comparison with SOTA on constant yaw (i.e., 45◦) with varying pitch (β ∈ [0◦, ±30◦]).)

(a) LFW. (b) CelebA-HQ.

Fig. 3. Synthesis of unconstrained data. Results for LFW (a) and CeleA-HQ (b).

and 2 tend to fail recovering the details of ear and haircut parts. Without L1 loss: the synthesized images are similar

to SF-GAN, but the local textures (e.g., mouth region) of the synthesized results are less like the GT. Without LSSIM
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Fig. 4. Synthesized results across different poses and illuminations. The first column is input (i.e., LR side-view
images). The second column is the side-view super-resolution (SR) face. The third column is the ground-truth (i.e., HR
frontal face). The fourth column is the frontal face sythesized with SF-GAN.

loss: the structures of face elements (e.g., mouth, eyebrows, face shape) deform. Without LID loss: the facial contour

becomes distorted. Without LAdv loss: the synthesized images are extremely blurry. In the end, these qualitative results

demonstrate the effective of each component of SF-GAN.

4 NETWORK ARCHITECTURES

The generator (G) of our SF-GAN has a deep encoder and a decoder with an SR module integrated. The encoder consists

of two 3 × 3 convolution layers with a stride 1 and 16 residual dense blocks (RDBs) [14]. The RDBs combine the merits

of a multi-level residual network and dense connections (Fig. 6). The output sizes of convolution layers and RDBs are

32 × 32 × 64.

Then, features extracted by the deep encoder are reconstructed by the decoder. From the encoder, features split into

two branches: a side-view SR-branch that synthesizes a super-resolve side-view image, which is ultimately fed back into

the main branch to reconstruct the HR frontal faces.

The specifications of architecture are listed in Table 2. Notice there are 2 up-sampling blocks (i.e., sr_1, sr_2) in the

SR-branch. This recovers the side-view HR image. The up-sampling blocks include a 3 × 3 convolution layer and a

pixel-shuffle [12] layer - it up-scales the feature maps (2×), leading to a final up-scale factor of 4 (i.e., 128 × 128).

The main branch contains two parts: (1) a fully connected layer (i.e., f c) followed by a maxout [2] and a shallow

deconvolution structure (i.e., dec_0, dec_1, dec_2, dec_3) to upscale the feature map of f c; (2) the stacked convolution

layers (i.e., conv32, conv64, conv128), followed by up-sampling layers (i.e., upsample_1, upsample_2) for reconstruction.
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Fig. 5. Model comparisons. Synthesis results of the proposed SF-GAN and its variants.
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Fig. 6. Details of RDB. RDB [14] employed in our encoder for deep feature extraction.

In the second part, convolution layers (i.e., conv32, conv64, conv128) precede two residual blocks [4]. The up-sampling

layers are the same as in SR-branch.

Inspired by [10], we employ two discriminators (D) at training (i.e., one for frontal faces Df and another parsing-guided

Dp ). The detailed structures of Df and Dp are summarized in Table 3 and 4, respectively. Each f _convk (k ∈ [1, 7]) in

Df contains a 3 × 3 convolution layer, batch normalization, leaky ReLU, and a residual block. The p_convk (k ∈ [0, 4]) in

Dp is structured like f _convk minus the last res-block.
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Table 2. Structure of the generator (G). Upper part shows the structure of encoder, middle is for SR-branch of decoder, and
lower is for main branch of decoder.

Layer Input Filter size Output size
encoder I LP 3 × 3/1 32 × 32 × 64
sr_1 encoder 3 × 3/1 64 × 64 × 64
sr_2 sr_1 3 × 3/1 128 × 128 × 64
conv0 sr_2 3 × 3/1 128 × 128 × 3

f latten, f c encoder – 512
maxpool f c – 256
dec_0 maxpool 8 × 8/1 8 × 8 × 64
dec_1 dec_0 3 × 3/4 32 × 32 × 32
dec_2 dec0_1 3 × 3/2 64 × 64 × 16
dec_3 dec0_2 3 × 3/2 128 × 128 × 8
conv_32 encoder , dec_1, sr_232 3 × 3/1 32 × 32 × 64

upsample_1 conv_32 – 64 × 64 × 64
conv_64 upsample_1, dec_2, sr_264 3 × 3/1 64 × 64 × 64

upsample_2 conv_64 – 128 × 128 × 64
conv_128 upsample_2, dec_3, sr_2128 3 × 3/1 128 × 128 × 64
conv1 conv_128 3 × 3/1 128 × 128 × 64
conv2 conv1 3 × 3/1 128 × 128 × 3

Table 3. Structure of the frontal face discriminator Df .

Layer Input Filter Size Output Size
f _conv0 ISF /IHF 3 × 3/1 128 × 128 × 64
f _conv1 f _conv0 3 × 3/2 64 × 64 × 64
f _conv2 f _conv1 3 × 3/1 64 × 64 × 128
f _conv3 f _conv2 3 × 3/2 32 × 32 × 128
f _conv4 f _conv3 3 × 3/1 32 × 32 × 256
f _conv5 f _conv4 3 × 3/2 16 × 16 × 256
f _conv6 f _conv4 3 × 3/1 16 × 16 × 512
f _conv7 f _conv4 3 × 3/2 8 × 8 × 512
f c1 f _conv6 – 1024
f c2 f c1 – 1
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