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Abstract— Electrocardiogram (ECG), Electrodermal Activity
(EDA), Electromyogram (EMG) and Impedance Cardiography
(ICG) are among physiological signals widely used in various
biomedical applications including health tracking, sleep quality
assessment, early disease detection/diagnosis and human affec-
tive state recognition. This paper presents the development of
a biosignal-specific processing and feature extraction tool for
analyzing these physiological signals according to the state-of-
the-art studies reported in the scientific literature. This tool is
intended to assist researchers in machine learning and pattern
recognition to extract feature matrix from these bio-signals
automatically and reliably. In this paper, we provided the algo-
rithms used for the signal-specific filtering and segmentation
as well as extracting features that have been shown highly
relevant to a better category discrimination in an intended
application. This tool is an open-source software written in
MATLAB and made compatible with MathWorks Classification
Learner app for further classification purposes such as model
training, cross-validation scheme farming, and classification
result computation.

I. INTRODUCTION

Physiological signals (biosignals) including Electrocardio-
gram (ECG), Impedance Cardiography (ICG), Electromyo-
gram (EMG) and Electrodermal Activity (EDA) have rich
information about physiological functioning of the body,
sleep quality, and human affective state, thus are widely used
as input data for machine learning and pattern recognition
research that are focused on preventive care, diagnostics, and
guiding therapy [1].

A significant amount of knowledge is required to properly
process these biosignals since distinct methods for noise
and artifact removal, segmentation and feature extraction are
needed for each signal modality [2]. To this end, there have
been many published works introducing biosignal specific
processing algorithms for ECG [3], [4], [5], [4], EMG [6],
[7], EDA [8], [9], [10] and ICG [11], [12]. Due to the
huge rising interest and usability of these biosignals in
medical and bio-engineering research, several commercial
software along with open-source toolboxes are developed
to ease the pre-processing and feature extraction of these
signals. However, a large portion of these software are not
suitable for a machine learning processing pipeline, since
they are manually intensive and sometimes are unreliable
and demanded visual inspection. Moreover, although it has
been shown that ICG signal features such as cardiac output

Y. Yin, M. Nabian, A. Nouhi, and S. Ostadabbas are with the Augmented
Cognition Laboratory (ACLab), Electrical and Computer Engineering De-
partment, Northeastern University, MA, USA (corresponding author’s e-
mail: ostadabbas@ece.neu.edu).

∗These authors contributed equally to this work. This work was supported
by a funding from MathWorks.

(CO) and stroke volume (SV) are correlated with human
psychosocial states [13], [14], [15], [16], [17], very few
software/toolbox are found to have ICG processing tool along
with other biosignals.

The present work aims at providing an open-source
biosignal-specific tool for psychologist, neuroscientists and
researchers in machine learning and pattern recognition to
process ECG, EMG, EDA and ICG biosignals, all in one
easy-to-use, MATLAB based toolbox and to extract relevant
features for each signal automatically and reliably. The de-
veloped toolbox is accessible via MathWorks File Exchange
site [18]. The preprocessing algorithms such as noise filtering
as well as algorithms used for segmentation and feature
extraction of each signal are based upon the state-of-the-
art published scientific articles [4], [10], [19] and each are
briefly described in this paper. The feature matrix outputted
by our algorithm could be directly used by machine learning
algorithms for further analysis. Besides, it could be simply
passed to Classification Learner App provided by MATLAB.

II. MATERIALS AND METHODS

A. Dataset

All physiological measures presented in this paper in-
cluding the ECG, EMG, EDA, ICG, and continuous blood
pressure (BP), were recorded using BioLab v.3.0.13 (Mind-
ware Technologies; Gahanna, OH), and were acquired on a
BioNex 8- Slot Chassis (Model 50-3711-08) with sampling
rate of 1000Hz. This dataset was recorded at Psychology
Department of Northeastern University and we got access to
the dataset via collaboration on several affective computing
projects. Recorded data from 100 participants, including 40
males and 60 females, was used in this study, where 20% of
them were employed for algorithm testing and verification
purposes. Our open-source toolbox include sample physio-
logical signals from 10 participants of the study.

B. Biosignal #1: Electrocardiogram (ECG)

ECG is the main diagnostic approach for detecting car-
diovascular diseases and contains many information such as
human health situation, sleep quality and emotional states
[3]. ECG cycle created by each heart beat contains several
critical waves including P, QRS and T waves shown in Fig. 1.
In our biosignal-specific processing tool, different types of
filters could be chosen to remove ECG signal noise. Then a
robust QRS detection algorithm is proposed based on Pan-
Tompkins algorithm [4].
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Fig. 1: Raw ECG signal (top); bandpass filtered ECG signal
(bottom).

1) ECG Preprocessing: We have provided three filter type
options for noise removal, including Elliptic, Gaussian, and
Butterworth filters. With a thorough analysis of the signal
power spectral density (PSD), we found out that a band-
pass Elliptic filter has the best performance on ECG signal
to remove baseline and high frequency noise. Hence we
assigned this filter as the default option in the filter menu.

2) ECG Feature Extraction: Inspired by the Pan-
Tompkins algorithm, we have modified the detection algo-
rithm to reflect a more robust QRS detection. The detected
locations of R, P, T, Q, and S in a few sample heartbeats are
shown in Fig. 1.

The following morphological features were extracted
based on the QRS detection:

RR interval is defined as the means of all detected RR
intervals in a segment [6].

SD is the standard deviation of all detected RR intervals
in a segment [6].

SDSD is defined as the standard deviation of the differ-
ences between adjacent RR intervals in a segment [6].

NN50 is defined as the number of pairs of adjacent RR
intervals where the first RR interval exceeds the second RR
interval by more than 50ms [6].

pNN50 is defined as the number of pairs of adjacent RR
intervals where the second RR interval exceeds the first RR
interval by more than 50ms [6].

EDR which is calculated based on the area of each normal
QRS complex measured over a fixed window width (which
is determined by the interval from the PQ junction to the J-
point of a normal QRS). w is the width of moving window.
We estimated w with two times sum of QR interval and RS
interval (w = 2× (QR+RS)). The center of the window is
aligned over each R peak to calculate the area under it. This
feature is calculation of mean of EDR. Standard deviation
of EDR is also computed as a feature.

QR to QS ratio and RS to QS ratio are defined as
the ratio of QR interval to QS interval and the ratio of RS
interval to QS interval for each R peak.

C. Biosignal #2: Electrodermal Activity (EDA)

EDA reflects momentary or long term changes in skin
electrical conductivity due to various internal or external
stimuli [20]. The EDA signal is composed of two activities,
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Fig. 2: Detection of SCRs on bartletted differentiated EDA signal
(top) and demonstration of detected SCRs’ peaks and starts on low-
passed EDA signal (bottom).

tonic and phasic. The slowly varying base signal is the tonic
part, also called the skin conductance level (SCL). The faster
changing part is called phasic activity or skin conductance
response (SCR), which is related to exterior stimuli or non-
specific activation and is the bumps that appear in the signal
[8]. Because of the relation of skin conductance variations to
the sympathetic nervous system, EDA signal has been widely
studies in emotion detection research [21]. Many important
features for this purpose are extracted from SCRs. As a
result, it is important to detect SCRs accurately.

1) EDA Preprocessing: To eliminate noises carried by
the EDA signal, a filtering step required prior to detection
algorithm. The filtering options provided here are the same
as ECG signals. In some studies, a Gaussian low-pass filter
have been recommended and used for the filtering process
of EDA [9].

2) EDA Feature Extraction: SCRs was detected by per-
forming differentiation and subsequent convolution with a
20-point Bartlett window [10], where Bartlett window is a
triangle function represented as:

w(n) =

{
2n
N , 0 ≤ n ≤ N/2
2− 2n

N , N/2 < n ≤ N (1)

The occurrence of the SCR is detected by finding two
consecutive zero-crossings, from negative to positive and
positive to negative. We considered negative to positive as
the beginning and positive to negative as the end of each
SCR. The amplitude of the SCR is obtained by finding the
maximum value between these two zero-crossings. Detected
SCRs with amplitudes smaller than 10 percent of the max-
imum SCR amplitudes already detected in that signal are
excluded [10]. Fig. 2 demonstrates the detection of SCRs.
On the top plot, the detected SCR’s beginnings, ends, and
peaks are shown on the differential signal. In the bottom plot,
the corresponding locations of the previously detected SCRs
are provided on the original low-pass filtered signal. After
detecting the SCRs on the signal, the following features can
be extracted:

SCR duration mean is the average of SRC durations.
Duration of an SCR is defined as distance from location of
the beginning to the end of an SCR.

SCR amplitude mean is the average of the amplitude of
the detected SCRs.



SCR rise-time mean is the average of the SCR rise-times.
Rise-time of an SCR is defined as time distance between the
beginning to the peak of an SCR.

Signal mean is the average of the low-pass filtered signal.
Number of detected SCRs is the number of the detected

SCRs in the EDA signal.

D. Biosignal #3: Electromyography (EMG)

EMG measures minute changes in the electrical activity
of muscles, which reflects minute muscle movements [22].
EMG is a diagnostic procedure to determine the health of
muscles and the nerve cells that control them (motor neurons)
by recording and evaluating the electrical activity produced
by skeletal muscles [23]. EMG signals are also widely used
in the emotion classification studies as a means to create a
taxonomy of facial expression [24].

1) EMG Preprocessing: Band-pass filters are used for the
noise removal of EMG signals [25]. The type of filter options
for EMG are the same as those provided for ECG. By the
power spectral density inspection of the EMG signals, an
Elliptic filter with the cutoff frequency of 10-300Hz was
recommended for the EMG filter.

2) EMG Feature Extraction: We selected the feature
options for EMG based on the features introduced in [19].

MAV is the mean absolute value of the EMG signal in a
time window analysis with N samples.

Zero crossing count is the numbers of times the EMG
signal crosses zero within a time window analysis.

Slope Sign Change is related to the signal frequency and
is defined as the number of times that the slope of the EMG
waveform changes sign within an analysis window.

Waveform Length provides a measure of the complexity
of the signal. It is defined as the cumulative length of the
EMG signal within the analysis window [19].

Log Detector is an estimate of the exerted muscle force.
The nonlinear detector is characterized as log(|xk|) and the
log detect feature is defined as:

logDetect = e
1
N

∑N
k=1 log |xk| (2)

SD is standard deviation of the EMG low-passed signal
using the filter selected in the EMG preprocessing page.

RMS is calculation of root mean square of the EMG
low-passed signal using the filter selected in the EMG
preprocessing page.

E. Biosignal #4: Impedance Cardiography (ICG)

ICG signal (also called dZ/dt) measurement is a non-
invasive method to extract important information (features)
regarding the heart activity. These features include: (1) left
ventricular ejection time (LVET), (2) stroke volume (SV), (3)
cardiac output (CO), (4) pre-ejection period (PEP), and (5)
total peripheral resistance (TPR). These five variables can
be extracted from the shape characteristics of ICG signal
combined with the corresponding ECG signal, transthoracic
basal impedance (Z0) signals and blood pressure (BP) signal.
The methods used to extract these features are based upon
the discussions provided in [11], [26].
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Fig. 3: Three cases of ICG signal(bottom) with the corresponding
ECG signal (top) indicating variations in the morphology of ICG
signal with the characteristic points identified by the algorithm.
Left, the B- and X- points are local minimum and global minimum
respectively; Middle, the B-point is a notch; Right, the X-point is
just a local minimum and NOT a global minimum.

1) ICG Preprocessing: The preprocessing of ICG in-
cludes noise removal and ensemble averaging technique:

Noise and artifact removal To remove noise and artifact
from the ICG signal, our developed software allows the users
to adjust the low and high cut-off frequencies as well as
the filter type. However, a second order elliptic band-pass
filter with low cut-off frequency of 0.75Hz and high cut-off
frequency of 40Hz is recommended in available Bio-signal
software such as Biolab [27].

Ensemble averaging of multiple cardiac cycles is per-
formed to remove the stochastically distributed noise as well
as respiratory influences and movement artifacts on the ICG
signal [11], [26], [28]. In this work, the number of cardiac
cycles for ensemble averaging can be chosen as an input.

2) ICG Feature Extraction: In order to extract features
from the ICG signal, the following characteristic points have
to be identified on the ICG signal:

Q-point location on the ICG signal is identical to the
location of Q-point on the ECG signal (Fig. 3).

B-point automatic identification comes with some diffi-
culties due to the variations in the morphology of the ICG
signal [11]. There has been several algorithmic definitions
proposed to approximate the location of the B-point [11],
[12]. Fig. 3 presents three examples showing the variation
of morphology of the ICG waveform. The general guideline
is that the B-point is on the onset of the rapid upstroke
toward the (dZ/dt)max [11]. An algorithm known as second
derivative classification [12], [29] is used to find the B-point
which robustly respond to all the three different morphology
illustrated in Fig. 3. To evaluate the performance of the
algorithm,B-point is detected both visually and by algorithm
for 150 random cases with 20 cardiac cycles for ensemble
averaging from 20 subjects Fig. 4 (left). Results show more
than 90% exact detection. The remaining 10% comes from
the outlier signals as well as invisible sharp notches.

(dZ/dt)max is identical to the global maximum value of
the ICG signal in one cardiac cycle. Fig. 4(b) validates the
algorithm performance for the detection of (dZ/dt)max.

X-point represents the closing of the aortic valve to
prevent the blood from the aorta streaming back into the
left ventricle [11]. By using the 2nd derivatives of ICG, we
present a X-point detection algorithm, which is robust to the
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Fig. 5: First page of GUI to select physiologocal signal type

morphological variations in ICG signals. Fig. 4(right) shows
the result of the validation of the algorithm for the X-point
detection in the same experiment described for the B-point.
Fig. 3 (right) demonstrate three ICG signals with different
morphologies in which the characteristic points are correctly
and robustly identified by our algorithm.

3) ICG Feature Extraction: After detecting the character-
istic points explained above, we can compute the features
with the following formula [11]:

PEP = TB − TQ

LV ET = TX − TB

SV = ρ× (L/Z0)
2 × LV ET × (dZ/dt)max

CO = SV × heartrate/1000

TPR = (BP/CO)× 80

where TB , TQ and TX are the times (in sec) when B-, Q-
and X-points occur respectively. ρ is the resistivity of blood
(ohm-cm) and is usually set to 135 ohm-cm [11]. L (cm) is
the distance between the recording electrodes.

III. GRAPHICAL USER INTERFACE (GUI)

Our biosignal-specific processing tool produces the fea-
ture matrix extracted from each biosignal which could be
further used as input feature matrix for variety of machine
learning and pattern recognition algorithms. They could also
be passed to the Classification Learner app designed for
machine learning analysis [30]. Using this app, several clas-
sification algorithms, such as decision trees, support vector
machines (SVM), and k-nearest neighbors can be directed
implemented.

Fig. 6: Example of second page of GUI specialized for preprocess-
ing of ICG signal.

A. Signal-Specific Preprocessing Page

In this page (see Fig. 5), the user selects the type of the
biosignal which is intended to be processed. There are ECG,
EMG, EDA, and ICG options. By choosing each signal type,
a second page appears in which the following inputs are
being asked: (1) the raw signals, (2) filter characteristics, (3)
special parameters which may be required for each signal
(ex. heart beat, electrode distance). It is noted that the raw
signal has to be in a matrix format with rows of data stack
on top of each other. After importing raw signal, user can
also visualize the time series signal at any stage in the
preprocessing pipeline.

To increase the signal-to-noise ratio (SNR) of the uploaded
signal, a filter panel is also provided in this page. On filter
panel, you can choose the filter type as well as other param-
eters of the filter such as low and high cutoff frequencies.
By pressing the Apply button or Feature selection button,
the filter will be applied to all of the data. An example of
preprocessing page for the ICG signal is shown in Fig. 6.

B. Feature Extraction Page

In feature extraction page, user can select the feature
vectors of interest among all the computed feature vectors
for the analyzed signal. By clicking Apply button, the feature
matrix with the name of ”Feature-Matrix” will be created in
the current MATLAB workspace. One can further continue
to the classification stage by clicking Classification Learner
App button which opens up the MathWorks learner app and
will be able to use the created feature matrix and perform
multiple classification tasks.

IV. CONCLUSION

In this work, we have created a biosignal-specific process-
ing and feature extraction software in MATLAB based on the
state-of-the-art algorithms provided in scientific literature for
each type of biosignals. The software computes the corre-
sponding feature matrix of biosignals, which can be further
used as input feature matrix for variety of machine learning
and pattern recognition algorithms. This open-source tool
could be useful in facilitating research in machine learning,
affective computing, and psychology.
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